Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 10(5): 1461-1468, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35592293

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease with accompanying perceptive disorder. We previously reported that decreasing levels of brain-derived neurotrophic factor (BDNF) promoted beta-amyloid (Aß)-induced neuronal cell death in neuron-like differentiated SH-SY5Y (ndSH-SY5Y) human neuroblastoma cells in an AD mimic cell model. We investigated the neuroprotective effects of passion fruit seed extract (PFSE) and one of the main stilbene compounds, piceatannol, in an AD cell model using ndSH-SY5Y cells. Both PFSE and piceatannol were found to protect Aß-induced neurite fragmentation in the cell model (protection efficacy; 34% in PFSE and 36% in piceatannol). In addition, both PFSE and piceatannol suppress Aß-induced neuronal cell death in the cell model (inhibitory effect; 27% in PFSE and 32% in piceatannol). Our study is the first to report that piceatannol-rich PFSE can repress Aß-induced neuronal cell death by protecting against neurite fragmentation in the AD human cell model. These findings suggest that piceatannol-rich PFSE can be considered a potentially neuroprotective functional food for both prevention and treatment of AD.

2.
Life (Basel) ; 12(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35054431

RESUMO

The genus Passiflora L. is widely cultivated in tropical and subtropical regions. The major species, Passiflora edulis Sims, is known as 'passion fruit' and is widely used in processed foods as well as eaten raw. P. edulis fruits are eaten for their pulp together with the seeds; however, the seeds are often discarded when used in processed foods. P. edulis seeds contain a variety of nutrients and functional components, and their industrial use is desirable from the perspective of waste reduction. Previous studies have analyzed the constituents of P. edulis and their physiological functions. P. edulis seeds contain various types of polyphenols, especially those rich in stilbenes (e.g., piceatannol). P. edulis seed extracts and isolated compounds from seeds have been reported to exhibit various physiological functions, such as antioxidant effects, improvement of skin condition, fat-burning promotion effects, and hypoglycemic effects. This review summarizes the nutritional characteristics, polyphenol content, and physiological functions of P. edulis seeds.

3.
Biochem Biophys Rep ; 20: 100684, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31517069

RESUMO

Passion fruit seed extract (PFSE), a product rich in stilbenes such as piceatannol and scirpusin B, has various physiological effects. It is unclear whether PFSE and its stilbene derivatives inhibit cancer cell proliferation via human glyoxalase I (GLO I), the rate-limiting enzyme for detoxification of methylglyoxal. We examined the anticancer effects of PFSE in two types of human cancer cell lines with different GLO I expression levels, NCI-H522 cells (highly-expressed GLO I) and HCT116 cells (lowly-expressed GLO I). PFSE and its stilbenes inhibited GLO I activity. In addition, PFSE and its stilbenes supressed the cancer cell proliferation of NCI-H522 cells more than HCT116 cells. These observations suggest that PFSE can provide a novel anticancer strategy for prevention and treatment.

4.
Biochem Biophys Rep ; 18: 100643, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31080897

RESUMO

Piceatannol (PIC), a phytochemical, is abundant in passion fruit (Passiflora edulis) seeds. In this study, we investigated the effects of PIC on the expression levels of antioxidant enzymes in C2C12 skeletal muscle cells and compared its effects with those of PIC analogues and polyphenols. We also evaluated its effects on hydrogen peroxide-induced accumulation of reactive oxygen species in C2C12 myotubes. Treatment with PIC led to dose-dependent upregulation of heme oxygenase-1 (Ho-1) and superoxide dismutase 1 (Sod1) mRNA expression in C2C12 myotubes. PIC was the most potent inducer of Ho-1 among the PIC analogues and major polyphenols tested. In addition, treatment with PIC suppressed the hydrogen peroxide-induced increase in intracellular reactive oxygen species levels. Our results suggest that PIC protects skeletal muscles from oxidative stress by activating antioxidant enzymes such as HO-1 and SOD1 and can therefore help prevent oxidative stress-induced muscle dysfunction such as muscle fatigue and sarcopenia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...